Category: Miscellaneous Science

The competing narratives of scientific revolution

Back when we were reading Karl Popper’s Logic of Scientific Discovery and Thomas Kuhn’s Structure of Scientific Revolutions, who would’ve thought that we’d be living through a scientific revolution ourselves? Scientific revolutions occur on all scales, but here let’s talk about some of the biggies: 1850-1950: Darwinian revolution in biology, changed how we think about […]

The post The competing narratives of scientific revolution appeared first on Statistical Modeling, Causal Inference, and Social Science.

Let’s get hysterical

Following up on our discussion of hysteresis in the scientific community, Nick Brown points us to this article this article from 2014, “Excellence by Nonsense: The Competition for Publications in Modern Science,” by Mathias Binswanger, who writes: To ensure the efficient use of scarce funds, the government forces universities and professors, together with their academic […]

The post Let’s get hysterical appeared first on Statistical Modeling, Causal Inference, and Social Science.

How feminism has made me a better scientist

Feminism is not a branch of science. It is not a set of testable propositions about the observable world, nor is it any single research method. From my own perspective, feminism is a political movement associated with successes such as votes for women, setbacks such as the failed Equal Rights Amendment, and continuing struggles in […]

The post How feminism has made me a better scientist appeared first on Statistical Modeling, Causal Inference, and Social Science.

Some thoughts after reading “Bad Blood: Secrets and Lies in a Silicon Valley Startup”

I just read the above-titled John Carreyrou book, and it’s as excellent as everyone says it is. I suppose it’s the mark of any compelling story that it will bring to mind other things you’ve been thinking about, and in this case I saw many connections between the story of Theranos—a company that raised billions […]

The post Some thoughts after reading “Bad Blood: Secrets and Lies in a Silicon Valley Startup” appeared first on Statistical Modeling, Causal Inference, and Social Science.

Let’s be open about the evidence for the benefits of open science

A reader who wishes to remain anonymous writes: I would be curious to hear your thoughts on is motivated reasoning among open science advocates. In particular, I’ve noticed that papers arguing for open practices have seriously bad/nonexistent causal identification strategies. Examples: Kidwell et al. 2017, Badges to Acknowledge Open Practices: A Simple, Low-Cost, Effective Method […]

The post Let’s be open about the evidence for the benefits of open science appeared first on Statistical Modeling, Causal Inference, and Social Science.

Response to Rafa: Why I don’t think ROC [receiver operating characteristic] works as a model for science

Someone pointed me to this post from a few years ago where Rafael Irizarry argues that scientific “pessimists” such as myself are, at least in some fields, “missing a critical point: that in practice, there is an inverse relationship between increasing rates of true discoveries and decreasing rates of false discoveries and that true discoveries […]

The post Response to Rafa: Why I don’t think ROC [receiver operating characteristic] works as a model for science appeared first on Statistical Modeling, Causal Inference, and Social Science.

The replication crisis and the political process

Jackson Monroe writes: I thought you might be interested in an article [by Dan McLaughlin] in NRO that discusses the replication crisis as part of a broadside against all public health research and social science. It seemed as though the author might be twisting the nature of the replication crisis toward his partisan ends, but […]

The post The replication crisis and the political process appeared first on Statistical Modeling, Causal Inference, and Social Science.

Revisiting “Is the scientific paper a fraud?”

Javier Benitez points us to this article from 2014 by Susan Howitt and Anna Wilson, which has subtitle, “The way textbooks and scientific research articles are being used to teach undergraduate students could convey a misleading image of scientific research,” and begins: In 1963, Peter Medawar gave a talk, Is the scientific paper a fraud?, […]

The post Revisiting “Is the scientific paper a fraud?” appeared first on Statistical Modeling, Causal Inference, and Social Science.

How to think about an accelerating string of research successes?

While reading this post by Seth Frey on famous scientists who couldn’t let go of bad ideas, I followed a link to this post by David Gorski from 2010 entitled, “Luc Montagnier: The Nobel disease strikes again.” The quick story is that Montagnier endorsed some dubious theories. Here’s Gorski: He only won the Nobel Prize […]

The post How to think about an accelerating string of research successes? appeared first on Statistical Modeling, Causal Inference, and Social Science.

Advice on “soft skills” for academics

Julia Hirschberg sent this along to the natural language processing mailing list at Columbia: here are some slides from last spring’s CRA-W Grad Cohort and previous years that might be of interest. all sorts of topics such as interviewing, building confidence, finding a thesis topic, preparing your thesis proposal, publishing, entrepreneurialism, and a very interesting […]

The post Advice on “soft skills” for academics appeared first on Statistical Modeling, Causal Inference, and Social Science.