You’ve got data on 35 countries, but it’s really just N=3 groups.

Jon Baron points to a recent article, “Societal inequalities amplify gender gaps in math,” by Thomas Breda, Elyès Jouini, and Clotilde Napp (supplementary materials here), and writes: A particular issue bothers me whenever I read studies like this, which use nations as the unit of analysis and then make some inference from correlations across nations. […]

The post You’ve got data on 35 countries, but it’s really just N=3 groups. appeared first on Statistical Modeling, Causal Inference, and Social Science.

Don’t calculate post-hoc power using observed estimate of effect size

Aleksi Reito writes: The statement below was included in a recent issue of Annals of Surgery: But, as 80% power is difficult to achieve in surgical studies, we argue that the CONSORT and STROBE guidelines should be modified to include the disclosure of power—even if less than 80%—with the given sample size and effect size […]

The post Don’t calculate post-hoc power using observed estimate of effect size appeared first on Statistical Modeling, Causal Inference, and Social Science.

“Tweeking”: The big problem is not where you think it is.

In her recent article about pizzagate, Stephanie Lee included this hilarious email from Brian Wansink, the self-styled “world-renowned eating behavior expert for over 25 years”: OK, what grabs your attention is that last bit about “tweeking” the data to manipulate the p-value, where Wansink is proposing research misconduct (from NIH: “Falsification: Manipulating research materials, equipment, […]

The post “Tweeking”: The big problem is not where you think it is. appeared first on Statistical Modeling, Causal Inference, and Social Science.

Multilevel data collection and analysis for weight training (with R code)

[image of cat lifting weights] A graduate student who wishes to remain anonymous writes: I was wondering if you could answer an elementary question which came to mind after reading your article with Carlin on retrospective power analysis. Consider the field of exercise science, and in particular studies on people who lift weights. (I sometimes […]

The post Multilevel data collection and analysis for weight training (with R code) appeared first on Statistical Modeling, Causal Inference, and Social Science.

A psychology researcher uses Stan, multiverse, and open data exploration to explore human memory

Under the heading, “An example of Stan to the rescue, multiverse analysis, and psychologists trying to do well,” Greg Cox writes: I’m currently a postdoc at Syracuse University studying how human memory works. I wanted to forward a paper of ours [“Information and Processes Underlying Semantic and Episodic Memory Across Tasks, Items, and Individuals,” by […]

The post A psychology researcher uses Stan, multiverse, and open data exploration to explore human memory appeared first on Statistical Modeling, Causal Inference, and Social Science.