I think that science is mostly “Brezhnevs.” It’s rare to see a “Gorbachev” who will abandon a paradigm just because it doesn’t do the job. Also, moving beyond naive falsificationism

Sandro Ambuehl writes:

I’ve been following your blog and the discussion of replications and replicability across different fields daily, for years. I’m an experimental economist. The following question arose from a discussion I recently had with Anna Dreber, George Loewenstein, and others.

You’ve previously written about the importance of sound theories (and the dangers of anything-goes theories), and I was wondering whether there’s any formal treatment of that, or any empirical evidence on whether empirical investigations based on precise theories that simultaneously test multiple predictions are more likely to replicate than those without theoretical underpinnings, or those that test only isolated predictions.

Specifically: Many of the proposed solutions to the replicability issue (such as preregistration) seem to implicitly assume one-dimensional hypotheses such as “Does X increase Y?” In experimental economics, by contrast, we often test theories. The value of a theory is precisely that it makes multiple predictions. (In economics, theories that explain just one single phenomenon, or make one single prediction are generally viewed as useless and are highly discouraged.) Theories typically also specify how its various predictions relate to each other, often even regarding magnitudes. They are formulated as mathematical models, and their predictions are correspondingly precise. Let’s call a within-subjects experiment that tests a set of predictions of a theory a “multi-dimensional experiment”.

My conjecture is that all the statistical skulduggery that leads to non-replicable results is much harder to do in a theory-based, multi-dimensional experiment. If so, multi-dimensional experiment should lead to better replicability even absent safeguards such as preregistration.

The intuition is the following. Suppose an unscrupulous researcher attempts to “prove” a single prediction that X increases Y. He can do that by selectively excluding subjects with low X and high Y (or high X and low Y) from the sample. Compare that to a researcher who attempts to “prove”, in a within-subject experiment, that X increases Y and A increases B. The latter researcher must exclude many more subjects until his “preferred” sample includes only subjects that conform to the joint hypothesis. The exclusions become harder to justify, and more subjects must be run.

A similar intuition applies to the case of an unscrupulous researcher who tries to “prove” a hypothesis by messing with the measurements of variables (e.g. by using log(X) instead of X). Here, an example is a theory that predicts that X increases both Y and Z. Suppose the researcher finds a Null if he regresses X on Y, but finds a positive correlation between f(X) on Y for some selected transformation f. If the researcher only “tested” the relation between X and Y (a one-dimensional experiment), the researcher could now declare “success”. In a multi-dimensional experiment, however, the researcher will have to dig for an f that doesn’t only generate a positive correlation between f(X) and Y, but also between f(X) and Z, which is harder. A similar point applies if the researcher measures X in different ways (e.g. through a variety of related survey questions) and attempts to select the measurement that best helps “prove” the hypothesis. (Moreover, such a theory would typically also specify something like “If X increases Y by magnitude alpha, then it should increase Z by magnitude beta”. The relation between Y and Z would then present an additional prediction to be tested, yet again increasing the difficulty of “proving” the result through nefarious manipulations.)

So if there is any formal treatment relating to the above intuitions, or any empirical evidence on what kind of research tends to be more or less likely to replicate (depending on factors other than preregistration), I would much appreciate if you could point me to it.

My reply:

I have two answers for you.

First, some colleagues and I recently published a preregistered replication of one of our own studies; see here. This might be interesting to you because our original study did not test a single thing, so our evaluation was necessarily holistic. In our case, the study was descriptive, not theoretically-motivated, so it’s not quite what you’re talking about—but it’s like your study in that the outcomes of interest were complex and multidimensional.

This was one of the problems I’ve had with recent mass replication studies, that they treat a scientific paper as if it has a single conclusion, even though real papers—theoretically-based or not—typically have many conclusions.

My second response is that I fear you are being too optimistic. Yes, when a theory makes multiple predictions, it may be difficulty to select data to make all the predictions work out. But on the other hand you have many degrees of freedom with which to declare success.

This has been one of my problems with a lot of social science research. Just about any pattern in data can be given a theoretical explanation, and just about any pattern in data can be said to be the result of a theoretical prediction. Remember that claim that women were three times more likely to wear red or pink clothing during a certain time of the month? The authors of that study did a replication which failed–but they declared it a success after adding an interaction with outdoor air temperature. Or there was this political science study where the data went in the opposite direction of the preregistration but were retroactively declared to be consistent with the theory. It’s my impression that a lot of economics is like this too: If it goes the wrong way, the result can be explained. That’s fine—it’s one reason why economics is often a useful framework for modeling the world—but I think the idea that statistical studies and p-values and replication are some sort of testing ground for models, the idea that economists are a group of hard-headed Popperians, regularly subjecting their theories to the hard test of reality—I’m skeptical of that take. I think it’s much more that individual economists, and schools of economists, are devoted to their theories and only rarely abandon them on their own. That is, I have a much more Kuhnian take on the whole process. Or, to put it another way, I try to be Popperian in my own research, I think that’s the ideal, but I think the Kuhnian model better describes the general process of science. Or, to put it another way, I think that science is mostly “Brezhnevs.” It’s rare to see a “Gorbachev” who will abandon a paradigm just because it doesn’t do the job.

Ambuehl responded:

Anna did have a similar reaction to you—and I think that reaction depends much on what passes as a “theory”. For instance, you won’t find anything in a social psychology textbook that an economic theorist would call a “theory”. You’re certainly right about the issues pertaining to hand-wavy ex-post explanations as with the clothes and ovulation study, or “anything-goes theories” such as the Himicanes that might well have turned out the other way.

By contrast, the theories I had in mind when asking the question are mathematically formulated theories that precisely specify their domain of applicability. An example of the kind of theory I have in mind would be Expected Utility theory, tested in countless papers, e.g. here). Another example of such a theory is the Shannon model of choice under limited attention (tested, e.g., here). These theories are in an entirely different ballpark than vague ideas like, e.g., self-perception theory or social comparison theory that are so loosely specified that one cannot even begin to test them unless one is willing to make assumptions on each of the countless researcher degrees of freedom they leave open.

In fact, economic theorists tend to regard the following characteristics virtues, or even necessities, of any model: precision (can be tested without requiring additional assumptions), parsimony (and hence, makes it hard to explain “uncomfortable” results by interactions etc.), generality (in the sense that they make multiple predictions, across several domains). And they very much frown upon ex post theorizing, ad-hoc assumptions, and imprecision. For theories that satisfy these properties, it would seem much harder to fudge empirical research in a way that doesn’t replicate, wouldn’t it? (Whether the community will accept the results or not seems orthogonal to the question of replicability, no?)

Finally, to the extent that theories in the form of precise, mathematical models are often based on wide bodies of empirical research (economic theorists often try to capture “stylized facts”), wouldn’t one also expect higher rates of replicability because such theories essentially correspond to well-informed priors?

So my overall point is, doesn’t (good) theory have a potentially important role to play regarding replicability? (Many current suggestions for solving the replication crisis, in particular formulaic ones such as pre-registration, or p<0.005, don't seem to recognize those potential benefits of sound theory.)

I replied:

Well, sure, but expected utility theory is flat-out false. Much has been written on the way that utilities only exist after the choices are given. This can even be seen in simple classroom demonstrations, as in section 5 of this paper from 1998. No statistics are needed at all to demonstrate the problems with that theory!

Amdahl responded with some examples of more sophisticated, but still testable, theories such as reference-dependent preferences, various theories of decision making under ambiguity, and perception-based theories, and I responded with my view that all these theories are either vague enough to be adaptable to any data or precise enough to be evidently false with no data collection needed. This was what Lakatos noted: any theory is either so brittle that it can be destroyed by collecting enough data, or flexible enough to fit anything. This does not mean we can’t do science, it just means we have to move beyond naive falsificationism.

P.S. Tomorrow’s post: “Boston Globe Columnist Suspended During Investigation Of Marathon Bombing Stories That Don’t Add Up.”