Riffing on techno-hype news articles such as An AI physicist can derive the natural laws of imagined universes, Peter Woit writes:

This is based on the misconception about string theory that the problem with it is that “the calculations are too hard”. The truth of the matter is that there is no actual theory, no known equations to solve, no real calculation to do. But, with the heavy blanket of hype surrounding machine learning these days, that doesn’t really matter, one can go ahead and set the machines to work. . . .

Taking all these developments together, it starts to become clear what the future of this field may look like . . . As the machines supersede humans’ ability to do the kind of thing theorists have been doing for the last twenty years, they will take over this activity, which they can do much better and faster. Biological theorists will be put out to pasture, with the machines taking over, performing ever more complex, elaborate and meaningless calculations, for ever and ever.

Much of the discussion of Woit’s post focuses on the details of the physics models and also the personalities involved in the dispute.

My interest here is somewhat different. For our purposes here let’s just assume Woit is correct that whatever these calculations are, they’re meaningless.

The question is, if they’re meaningless, why do them at all? Just to draw an analogy: it used to be a technical challenge for humans to calculate digits of the decimal expansion of pi. But now computers can do it faster. I guess it’s still a technical challenge for humans to come up with algorithms by which computers can compute more digits. But maybe someone will at some point program a computer to come up with faster algorithms on their own. And we could imagine a network of computers somewhere, doing nothing but computing more digits of pi. But that would just be a pointless waste of resources, kinda like bitcoin but without the political angle.

I guess in the short term there would be motivation to have computers working out more and more string theory, but only because there are influential humans who think it’s worth doing. So in that sense, machines doing string theory is like the old-time building of pyramids and cathedrals, except that the cost is in material resources rather than human labor. It’s kind of amusing to think of the endgame of this sort of science as being its production purely for its own sake. A robot G. H. Hardy would be pleased.