Posts Tagged ‘ Bayesian ’

The Non-parametric Bootstrap as a Bayesian Model

April 17, 2015
By
The Non-parametric Bootstrap as a Bayesian Model

The non-parametric bootstrap was my first love. I was lost in a muddy swamp of zs, ts and ps when I first saw her. Conceptually beautiful, simple to implement, easy to understand (I thought back then, at least). And when she whispered in my ear, “I...

Read more »

Bayes factors vs p-values

March 31, 2015
By

Bayesian analysis and Frequentist analysis often lead to the same conclusions by different routes. But sometimes the two forms of analysis lead to starkly different conclusions. The following illustration of this difference comes from a talk by Luis Pericci last week. He attributes the example to “Bernardo (2010)” though I have not been able to find the exact […]

Read more »

Wrapping up Bayes@Lund 2015

February 12, 2015
By
Wrapping up Bayes@Lund 2015

For the second year around I and Ullrika Sahlin arranged the mini-conference Bayes@Lund, with the aim of bringing together researchers in the in the south of Sweden working with Bayesian methods. This year the committee was also beefed up by Paul Cap...

Read more »

More data, less accuracy

January 27, 2015
By

Statistical methods should do better with more data. That’s essentially what the technical term “consistency” means. But with improper numerical techniques, the the numerical error can increase with more data, overshadowing the decreasing statistical error. There are three ways Bayesian posterior probability calculations can degrade with more data: Polynomial approximation Missing the spike Underflow Elementary numerical integration algorithms, […]

Read more »

Extended Kalman filter example in R

January 13, 2015
By
Extended Kalman filter example in R

Last week's post about the Kalman filter focused on the derivation of the algorithm. Today I will continue with the extended Kalman filter (EKF) that can deal also with nonlinearities. According to Wikipedia the EKF has been considered the de facto sta...

Read more »

Probable Points and Credible Intervals, Part 2: Decision Theory

January 7, 2015
By
Probable Points and Credible Intervals, Part 2: Decision Theory

“Behind every great point estimate stands a minimized loss function.” – Me, just now This is a continuation of Probable Points and Credible Intervals, a series of posts on Bayesian point and interval estimates. In Part 1 we looked at these...

Read more »

Kalman filter example visualised with R

January 6, 2015
By
Kalman filter example visualised with R

At the last Cologne R user meeting Holger Zien gave a great introduction to dynamic linear models (dlm). One special case of a dlm is the Kalman filter, which I will discuss in this post in more detail. I kind of used it earlier when I measured the tem...

Read more »

R Code for Election Posterior Distribution From a Random Sample

January 5, 2015
By
R Code for Election Posterior Distribution From a Random Sample

I wrote a summary article a couple of years ago discussing some probability aspects of the 2012 Presidential general election with a particular focus on exit polling. I’ve had a few people email me asking for the code I used in some if the examples. I have used this code since before the 2008 elections so […]

Read more »

One-way ANOVA with fixed and random effects from a Bayesian perspective

December 22, 2014
By
One-way ANOVA with fixed and random effects from a Bayesian perspective

This blog post is derived from a computer practical session that I ran as part of my new course on Statistics for Big Data, previously discussed. This course covered a lot of material very quickly. In particular, I deferred introducing notions of hierarchical modelling until the Bayesian part of the course, where I feel it … Continue reading One-way ANOVA with fixed and random effects from a Bayesian perspective

Read more »

Notes from the Kölner R meeting, 12 December 2014

December 16, 2014
By
Notes from the Kölner R meeting, 12 December 2014

Last week's Cologne R user group meeting was the best attended so far, and it was a remarkable event - I believe not a single line of R code was shown. Still, it was an R user group meeting with two excellent talks, and you will understand shortly why ...

Read more »


Subscribe

Email:

  Subscribe