A story can be an effective way to send a message. Anna Clemens explains: Why are stories so powerful? To answer this, we have to go back at least 100,000 years. This is when humans started to speak. For the following roughly 94,000 years, we could only use spoken words to communicate. Stories helped us […]

# Category: Teaching

## Coursera course on causal inference from Michael Sobel at Columbia

Here’s the description: This course offers a rigorous mathematical survey of causal inference at the Master’s level. Inferences about causation are of great importance in science, medicine, policy, and business. This course provides an introduction to the statistical literature on causal inference that has emerged in the last 35-40 years and that has revolutionized the […]

## MRP (multilevel regression and poststratification; Mister P): Clearing up misunderstandings about

Someone pointed me to this thread where I noticed some issues I’d like to clear up: David Shor: “MRP itself is like, a 2009-era methodology.” Nope. The first paper on MRP was from 1997. And, even then, the component pieces were not new: we were just basically combining two existing ideas from survey sampling: regression […]

The post MRP (multilevel regression and poststratification; Mister P): Clearing up misunderstandings about appeared first on Statistical Modeling, Causal Inference, and Social Science.

## MRP (multilevel regression and poststratification; Mister P): Clearing up misunderstandings about

Someone pointed me to this thread where I noticed some issues I’d like to clear up: David Shor: “MRP itself is like, a 2009-era methodology.” Nope. The first paper on MRP was from 1997. And, even then, the component pieces were not new: we were just basically combining two existing ideas from survey sampling: regression […]

The post MRP (multilevel regression and poststratification; Mister P): Clearing up misunderstandings about appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Robin Pemantle’s updated bag of tricks for math teaching!

Here it is! He’s got the following two documents: – Tips for Active Learning in the College Setting – Tips for Active Learning in Teacher Prep or in the K-12 Setting This is great stuff (see my earlier review here). Every mathematician and math teacher in the universe should read this. So, if any of […]

The post Robin Pemantle’s updated bag of tricks for math teaching! appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Robin Pemantle’s updated bag of tricks for math teaching!

Here it is! He’s got the following two documents: – Tips for Active Learning in the College Setting – Tips for Active Learning in Teacher Prep or in the K-12 Setting This is great stuff (see my earlier review here). Every mathematician and math teacher in the universe should read this. So, if any of […]

The post Robin Pemantle’s updated bag of tricks for math teaching! appeared first on Statistical Modeling, Causal Inference, and Social Science.

## p-value graffiti in the lift [jatp]

## June is applied regression exam month!

So. I just graded the final exams for our applied regression class. Lots of students made mistakes which gave me the feeling that I didn’t teach the material so well. So I thought it could help lots of people out there if I were to share the questions, solutions, and common errors. It was an […]

The post June is applied regression exam month! appeared first on Statistical Modeling, Causal Inference, and Social Science.

## June is applied regression exam month!

So. I just graded the final exams for our applied regression class. Lots of students made mistakes which gave me the feeling that I didn’t teach the material so well. So I thought it could help lots of people out there if I were to share the questions, solutions, and common errors. It was an […]

The post June is applied regression exam month! appeared first on Statistical Modeling, Causal Inference, and Social Science.

## a glaringly long explanation

It is funny that, when I am teaching the rudiments of Bayesian statistics to my undergraduate students in Paris-Dauphine, including ABC via Rasmus’ socks, specific questions about the book (The Bayesian Choice) start popping up on X validated! Last week was about the proof that ABC is exact when the tolerance is zero. And the […]

## Stephen Wolfram explains neural nets

It’s easy to laugh at Stephen Wolfram, and I don’t like some of his business practices, but he’s an excellent writer and is full of interesting ideas. This long introduction to neural network prediction algorithms is an example. I have no idea if Wolfram wrote this book chapter himself or if he hired one of […]

The post Stephen Wolfram explains neural nets appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Present each others’ posters

It seems that I’ll be judging a poster session next week. So this seems like a good time to repost this from 2009: I was at a conference that had an excellent poster session. I realized the session would have been even better if the students with posters had been randomly assigned to stand next […]

The post Present each others’ posters appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Don’t get fooled by observational correlations

Gabriel Power writes: Here’s something a little different: clever classrooms, according to which physical characteristics of classrooms cause greater learning. And the effects are large! Moving from the worst to the best design implies a gain of 67% of one year’s worth of learning! Aside from the dubiously large effect size, it looks like the […]

The post Don’t get fooled by observational correlations appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Columbia Data Science Institute art contest

This is a great idea! Unfortunately, only students at Columbia can submit. I encourage other institutions to do such contests too. We did something similar at Columbia, maybe 10 or 15 years ago? It went well, we just didn’t have the energy to do it again every year, as we’d initially planned. So I’m very […]

The post Columbia Data Science Institute art contest appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Discussion of effects of growth mindset: Let’s not demand unrealistic effect sizes.

Shreeharsh Kelkar writes: As a regular reader of your blog, I wanted to ask you if you had taken a look at the recent debate about growth mindset [see earlier discussions here and here] that happened on theconversation.com. Here’s the first salvo by Brooke McNamara, and then the response by Carol Dweck herself. The debate […]

The post Discussion of effects of growth mindset: Let’s not demand unrealistic effect sizes. appeared first on Statistical Modeling, Causal Inference, and Social Science.

## StanCon 2018 Helsinki tutorial videos online

StanCon 2018 Helsinki tutorial videos are now online at Stan YouTube channel List of tutorials at StanCon 2018 Helsinki Basics of Bayesian inference and Stan, parts 1 + 2, Jonah Gabry & Lauren Kennedy Hierarchical models, parts 1 + 2, Ben Goodrich Stan C++ development: Adding a new function to Stan, parts 1 + 2, […]

The post StanCon 2018 Helsinki tutorial videos online appeared first on Statistical Modeling, Causal Inference, and Social Science.

## John Hattie’s “Visible Learning”: How much should we trust this influential review of education research?

Dan Kumprey, a math teacher at Lake Oswego High School, Oregon, writes: Have you considered taking a look at the book Visible Learning by John Hattie? It seems to be permeating and informing reform in our K-12 schools nationwide. Districts are spending a lot of money sending their staffs to conferences by Solution Tree to […]

The post John Hattie’s “Visible Learning”: How much should we trust this influential review of education research? appeared first on Statistical Modeling, Causal Inference, and Social Science.

## The competing narratives of scientific revolution

Back when we were reading Karl Popper’s Logic of Scientific Discovery and Thomas Kuhn’s Structure of Scientific Revolutions, who would’ve thought that we’d be living through a scientific revolution ourselves? Scientific revolutions occur on all scales, but here let’s talk about some of the biggies: 1850-1950: Darwinian revolution in biology, changed how we think about […]

The post The competing narratives of scientific revolution appeared first on Statistical Modeling, Causal Inference, and Social Science.

## The competing narratives of scientific revolution

Back when we were reading Karl Popper’s Logic of Scientific Discovery and Thomas Kuhn’s Structure of Scientific Revolutions, who would’ve thought that we’d be living through a scientific revolution ourselves? Scientific revolutions occur on all scales, but here let’s talk about some of the biggies: 1850-1950: Darwinian revolution in biology, changed how we think about […]

The post The competing narratives of scientific revolution appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Amelia, it was just a false alarm

Nah, jet fuel can’t melt steel beams. I’ve watched enough conspiracy documentaries – Camp Cope Some ideas persist long after the mounting evidence against them becomes overwhelming. Some of these things are kooky but probably harmless (try as I might, I do not care about ESP etc), whereas some are deeply damaging (I’m looking at you “vaccines […]

The post Amelia, it was just a false alarm appeared first on Statistical Modeling, Causal Inference, and Social Science.