Category: Teaching

a glaringly long explanation

It is funny that, when I am teaching the rudiments of Bayesian statistics to my undergraduate students in Paris-Dauphine, including ABC via Rasmus’ socks, specific questions about the book (The Bayesian Choice) start popping up on X validated! Last week was about the proof that ABC is exact when the tolerance is zero. And the […]

Stephen Wolfram explains neural nets

It’s easy to laugh at Stephen Wolfram, and I don’t like some of his business practices, but he’s an excellent writer and is full of interesting ideas. This long introduction to neural network prediction algorithms is an example. I have no idea if Wolfram wrote this book chapter himself or if he hired one of […]

The post Stephen Wolfram explains neural nets appeared first on Statistical Modeling, Causal Inference, and Social Science.

Don’t get fooled by observational correlations

Gabriel Power writes: Here’s something a little different: clever classrooms, according to which physical characteristics of classrooms cause greater learning. And the effects are large! Moving from the worst to the best design implies a gain of 67% of one year’s worth of learning! Aside from the dubiously large effect size, it looks like the […]

The post Don’t get fooled by observational correlations appeared first on Statistical Modeling, Causal Inference, and Social Science.

Columbia Data Science Institute art contest

This is a great idea! Unfortunately, only students at Columbia can submit. I encourage other institutions to do such contests too. We did something similar at Columbia, maybe 10 or 15 years ago? It went well, we just didn’t have the energy to do it again every year, as we’d initially planned. So I’m very […]

The post Columbia Data Science Institute art contest appeared first on Statistical Modeling, Causal Inference, and Social Science.

Discussion of effects of growth mindset: Let’s not demand unrealistic effect sizes.

Shreeharsh Kelkar writes: As a regular reader of your blog, I wanted to ask you if you had taken a look at the recent debate about growth mindset [see earlier discussions here and here] that happened on theconversation.com. Here’s the first salvo by Brooke McNamara, and then the response by Carol Dweck herself. The debate […]

The post Discussion of effects of growth mindset: Let’s not demand unrealistic effect sizes. appeared first on Statistical Modeling, Causal Inference, and Social Science.

StanCon 2018 Helsinki tutorial videos online

StanCon 2018 Helsinki tutorial videos are now online at Stan YouTube channel List of tutorials at StanCon 2018 Helsinki Basics of Bayesian inference and Stan, parts 1 + 2, Jonah Gabry & Lauren Kennedy Hierarchical models, parts 1 + 2, Ben Goodrich Stan C++ development: Adding a new function to Stan, parts 1 + 2, […]

The post StanCon 2018 Helsinki tutorial videos online appeared first on Statistical Modeling, Causal Inference, and Social Science.

John Hattie’s “Visible Learning”: How much should we trust this influential review of education research?

Dan Kumprey, a math teacher at Lake Oswego High School, Oregon, writes: Have you considered taking a look at the book Visible Learning by John Hattie? It seems to be permeating and informing reform in our K-12 schools nationwide. Districts are spending a lot of money sending their staffs to conferences by Solution Tree to […]

The post John Hattie’s “Visible Learning”: How much should we trust this influential review of education research? appeared first on Statistical Modeling, Causal Inference, and Social Science.

The competing narratives of scientific revolution

Back when we were reading Karl Popper’s Logic of Scientific Discovery and Thomas Kuhn’s Structure of Scientific Revolutions, who would’ve thought that we’d be living through a scientific revolution ourselves? Scientific revolutions occur on all scales, but here let’s talk about some of the biggies: 1850-1950: Darwinian revolution in biology, changed how we think about […]

The post The competing narratives of scientific revolution appeared first on Statistical Modeling, Causal Inference, and Social Science.

The competing narratives of scientific revolution

Back when we were reading Karl Popper’s Logic of Scientific Discovery and Thomas Kuhn’s Structure of Scientific Revolutions, who would’ve thought that we’d be living through a scientific revolution ourselves? Scientific revolutions occur on all scales, but here let’s talk about some of the biggies: 1850-1950: Darwinian revolution in biology, changed how we think about […]

The post The competing narratives of scientific revolution appeared first on Statistical Modeling, Causal Inference, and Social Science.

Amelia, it was just a false alarm

Nah, jet fuel can’t melt steel beams. I’ve watched enough conspiracy documentaries – Camp Cope Some ideas persist long after the mounting evidence against them becomes overwhelming. Some of these things are kooky but probably harmless (try as I might, I do not care about ESP etc), whereas some are deeply damaging (I’m looking at you “vaccines […]

The post Amelia, it was just a false alarm appeared first on Statistical Modeling, Causal Inference, and Social Science.

Amelia, it was just a false alarm

Nah, jet fuel can’t melt steel beams. I’ve watched enough conspiracy documentaries – Camp Cope Some ideas persist long after the mounting evidence against them becomes overwhelming. Some of these things are kooky but probably harmless (try as I might, I do not care about ESP etc), whereas some are deeply damaging (I’m looking at you “vaccines […]

The post Amelia, it was just a false alarm appeared first on Statistical Modeling, Causal Inference, and Social Science.

What makes Robin Pemantle’s bag of tricks for teaching math so great?

It’s here, and he even calls it a “bag of tricks”! Robin’s suggestions are similar to what Deb and I recommend, but Robin’s article is a crisp 25 pages and is purely focused on general advice for getting things to go well in the classroom, whereas we spend most of our book on specific activities […]

The post What makes Robin Pemantle’s bag of tricks for teaching math so great? appeared first on Statistical Modeling, Causal Inference, and Social Science.

What makes Robin Pemantle’s bag of tricks for teaching math so great?

It’s here, and he even calls it a “bag of tricks”! Robin’s suggestions are similar to what Deb and I recommend, but Robin’s article is a crisp 25 pages and is purely focused on general advice for getting things to go well in the classroom, whereas we spend most of our book on specific activities […]

The post What makes Robin Pemantle’s bag of tricks for teaching math so great? appeared first on Statistical Modeling, Causal Inference, and Social Science.

Advice on “soft skills” for academics

Julia Hirschberg sent this along to the natural language processing mailing list at Columbia: here are some slides from last spring’s CRA-W Grad Cohort and previous years that might be of interest. all sorts of topics such as interviewing, building confidence, finding a thesis topic, preparing your thesis proposal, publishing, entrepreneurialism, and a very interesting […]

The post Advice on “soft skills” for academics appeared first on Statistical Modeling, Causal Inference, and Social Science.

Advice on soft skills for academics

Julia Hirschberg sent this along to the natural language processing mailing list at Columbia: here are some slides from last spring’s CRA-W Grad Cohort and previous years that might be of interest. all sorts of topics such as interviewing, building confidence, finding a thesis topic, preparing your thesis proposal, publishing, entrepreneurialism, and a very interesting […]

The post Advice on soft skills for academics appeared first on Statistical Modeling, Causal Inference, and Social Science.

Of statistics class and judo class: Beyond the paradigm of sequential education

In judo class they kinda do the same thing every time: you warm up and then work on different moves. Different moves in different classes, and there are different levels, but within any level the classes don’t really have a sequence. You just start where you start, practice over and over, and gradually improve. Different […]

The post Of statistics class and judo class: Beyond the paradigm of sequential education appeared first on Statistical Modeling, Causal Inference, and Social Science.

Of statistics class and judo class: Beyond the paradigm of sequential education

In judo class they kinda do the same thing every time: you warm up and then work on different moves. Different moves in different classes, and there are different levels, but within any level the classes don’t really have a sequence. You just start where you start, practice over and over, and gradually improve. Different […]

The post Of statistics class and judo class: Beyond the paradigm of sequential education appeared first on Statistical Modeling, Causal Inference, and Social Science.

The statistical checklist: Could there be a list of guidelines to help analysts do better work?

[image of cat with a checklist] Paul Cuffe writes: Your idea of “researcher degrees of freedom” [actually not my idea; the phrase comes from Simmons, Nelson, and Simonsohn] really resonates with me: I’m continually surprised by how many researchers freestyle their way through a statistical analysis, using whatever tests, and presenting whatever results, strikes their […]

The post The statistical checklist: Could there be a list of guidelines to help analysts do better work? appeared first on Statistical Modeling, Causal Inference, and Social Science.

The “Carl Sagan effect”

Javier Benítez writes: I am not in academia, but I have learned a lot about science from what’s available to the public. But I also didn’t know that public outreach is looked down upon by academia. See the Carl Sagan Effect. Susana Martinez-Conde writes: One scientist, who agreed to participate on the condition of anonymity—an […]

The post The “Carl Sagan effect” appeared first on Statistical Modeling, Causal Inference, and Social Science.