Category: MCMC

ABC-SAEM

In connection with the recent PhD thesis defence of Juliette Chevallier, in which I took a somewhat virtual part for being physically in Warwick, I read a paper she wrote with Stéphanie Allassonnière on stochastic approximation versions of the EM algorithm. Computing the MAP estimator can be done via some adapted for simulated annealing versions […]

what if what???

[Here is a section of the Wikipedia page on Monte Carlo methods which makes little sense to me. What if it was not part of this page?!] Monte Carlo simulation versus “what if” scenarios There are ways of using probabilities that are definitely not Monte Carlo simulations – for example, deterministic modeling using single-point estimates. […]

Hausdorff school on MCMC [28 March-02 April, 2020]

The Hausdorff Centre for Mathematics will hold a week on recent advances in MCMC in Bonn, Germany, March 30 – April 3, 2020. Preceded by two days of tutorials. (“These tutorials will introduce basic MCMC methods and mathematical tools for studying the convergence to the invariant measure.”) There is travel support available, but the application […]

delayed-acceptance. ADA boosted

Samuel Wiqvist and co-authors from Scandinavia have recently arXived a paper on a new version of delayed acceptance MCMC. The ADA in the novel algorithm stands for approximate and accelerated, where the approximation in the first stage is to use a Gaussian process to replace the likelihood. In our approach, we used subsets for partial […]

efficient MCMC sampling

Maxime Vono, Daniel Paulin and Arnaud Doucet recently arXived a paper about a regularisation technique that allows for efficient sampling from a complex posterior which potential function factorises as a large sum of transforms of linear projections of the parameter θ The central idea in the paper [which was new to me] is to introduce […]

skipping sampler

“The Skipping Sampler is an adaptation of the MH algorithm designed to sample from targets which have areas of zero density. It ‘skips’ across such areas, much as a flat stone can skip or skim repeatedly across the surface of water.” An interesting challenge is simulating from a density restricted to a set C when […]

robust Bayesian synthetic likelihood

David Frazier (Monash University) and Chris Drovandi (QUT) have recently come up with a robustness study of Bayesian synthetic likelihood that somehow mirrors our own work with David. In a sense, Bayesian synthetic likelihood is definitely misspecified from the start in assuming a Normal distribution on the summary statistics. When the data generating process is […]

MCMC importance samplers for intractable likelihoods

Jordan Franks just posted on arXiv his PhD dissertation at the University of Jyväskylä, where he discuses several of his works: M. Vihola, J. Helske, and J. Franks. Importance sampling type estimators based on approximate marginal MCMC. Preprint arXiv:1609.02541v5, 2016. J. Franks and M. Vihola. Importance sampling correction versus standard averages of reversible MCMCs in […]

likelihood free nested sampling

A recent paper by Mikelson and Khammash found on bioRxiv considers the (paradoxical?) mixture of nested sampling and intractable likelihood. They however cover only the case when a particle filter or another unbiased estimator of the likelihood function. Unless I am missing something in the paper, this seems a very costly and convoluted approach when […]

EntropyMCMC [R package]

My colleague from the Université d’Orléans, Didier Chauveau, has just published on CRAN a new R package called EntropyMCMC, which contains convergence assessment tools for MCMC algorithms, based on non-parametric estimates of the Kullback-Leibler divergence between current distribution and target. (A while ago, quite a while ago!, we actually collaborated with a few others on […]

asymptotics of synthetic likelihood

David Nott, Chris Drovandi and Robert Kohn just arXived a paper on a comparison between ABC and synthetic likelihood, which is both interesting and timely given that synthetic likelihood seems to be lacking behind in terms of theoretical evaluation. I am however as puzzled by the results therein as I was by the earlier paper […]

a new rule for adaptive importance sampling

Art Owen and Yi Zhou have arXived a short paper on the combination of importance sampling estimators. Which connects somehow with the talk about multiple estimators I gave at ESM last year in Helsinki. And our earlier AMIS combination. The paper however makes two important assumptions to reach optimal weighting, which is inversely proportional to […]

automatic adaptation of MCMC algorithms

“A typical adaptive MCMC sampler will approximately optimize performance given the kind of sampler chosen in the first place, but it will not optimize among the variety of samplers that could have been chosen.” Last February (2018), Dao Nguyen and five co-authors arXived a paper that I missed. On a new version of adaptive MCMC […]

call for sessions and labs at Bay2sC0mp²⁰

A call to all potential participants to the incoming BayesComp 2020 conference at the University of Florida in Gainesville, Florida, 7-10 January 2020, to submit proposals [to me] for contributed sessions on everything computational or training labs [to David Rossell] on a specific language or software. The deadline is April 1 and the sessions will […]

Computational Bayesian Statistics [book review]

This Cambridge University Press book by M. Antónia Amaral Turkman, Carlos Daniel Paulino, and Peter Müller is an enlarged translation of a set of lecture notes in Portuguese. (Warning: I have known Peter Müller from his PhD years in Purdue University and cannot pretend to perfect objectivity. For one thing, Peter once brought me frozen-solid […]

revisiting the Gelman-Rubin diagnostic

Just before Xmas, Dootika Vats (Warwick) and Christina Knudson arXived a paper on a re-evaluation of the ultra-popular 1992 Gelman and Rubin MCMC convergence diagnostic. Which compares within-variance and between-variance on parallel chains started from hopefully dispersed initial values. Or equivalently an under-estimating and an over-estimating estimate of the MCMC average. In this paper, the […]

a book and two chapters on mixtures

The Handbook of Mixture Analysis is now out! After a few years of planning, contacts, meetings, discussions about notations, interactions with authors, further interactions with late authors, repeating editing towards homogenisation, and a final professional edit last summer, this collection of nineteen chapters involved thirty-five contributors. I am grateful to all participants to this piece […]