**A**rt Owen and Yi Zhou have arXived a short paper on the combination of importance sampling estimators. Which connects somehow with the talk about multiple estimators I gave at ESM last year in Helsinki. And our earlier AMIS combination. The paper however makes two important assumptions to reach optimal weighting, which is inversely proportional to the variance:

- the estimators are uncorrelated if dependent;
- the variance of the k-th estimator is of order a (negative) power of k.

The later is puzzling when considering a series of estimators, in that k appears to act as a sample size (as in AMIS), the power is usually unknown but also there is no reason for the power to be the same for all estimators. The authors propose to use ½ as the default, both because this is the standard Monte Carlo rate and because the loss in variance is then minimal, being 12% larger.

As an aside, Art Owen also wrote an invited discussion “the unreasonable effectiveness of Monte Carlo” of ” Probabilistic Integration: A Role in Statistical Computation?” by François-Xavier Briol, Chris Oates, Mark Girolami (Warwick), Michael Osborne and Deni Sejdinovic, to appear in Statistical Science, discussion that contains a wealth of smart and enlightening remarks. Like the analogy between pseudo-random number generators [which work unreasonably well!] vs true random numbers and Bayesian numerical integration versus non-random functions. Or the role of advanced bootstrapping when assessing the variability of Monte Carlo estimates (citing a paper of his from 1992). Also pointing out at an intriguing MCMC paper by Michael Lavine and Jim Hodges to appear in The American Statistician.