Category: Tutorials

Data Layout Exercises

John Mount, Nina Zumel; Win-Vector LLC 2019-04-27 In this note we will use five real life examples to demonstrate data layout transforms using the cdata R package. The examples for this note are all demo-examples from tidyr/demo/, and are mostly based on questions posted to StackOverflow. They represent a good cross-section of data layout problems, … Continue reading Data Layout Exercises

Piping is Method Chaining

What R users now call piping, popularized by Stefan Milton Bache and Hadley Wickham, is inline function application (this is notationally similar to, but distinct from the powerful interprocess communication and concurrency tool introduced to Unix by Douglas McIlroy in 1973). In object oriented languages this sort of notation for function application has been called … Continue reading Piping is Method Chaining

Standard Evaluation Versus Non-Standard Evaluation in R

There is a lot of unnecessary worry over “Non Standard Evaluation” (NSE) in R versus “Standard Evaluation” (SE, or standard “variables names refer to values” evaluation). This very author is guilty of over-discussing the issue. But let’s give this yet another try. The entire difference between NSE and regular evaluation can be summed up in … Continue reading Standard Evaluation Versus Non-Standard Evaluation in R

How cdata Control Table Data Transforms Work

With all of the excitement surrounding cdata style control table based data transforms (the cdata ideas being named as the “replacements” for tidyr‘s current methodology, by the tidyr authors themselves!) I thought I would take a moment to describe how they work. cdata defines two primary data manipulation operators: rowrecs_to_blocks() and blocks_to_rowrecs(). These are the … Continue reading How cdata Control Table Data Transforms Work

Why we Did Not Name the cdata Transforms wide/tall/long/short

We recently saw this UX (user experience) question from the tidyr author as he adapts tidyr to cdata techniques. The terminology that he is not adopting from cdata is “unpivot_to_blocks()” and “pivot_to_rowrecs()”. One of the research ideas in the cdata package is that the important thing to call out is record structure. The important point … Continue reading Why we Did Not Name the cdata Transforms wide/tall/long/short

Tidyverse users: gather/spread are on the way out

From https://twitter.com/sharon000/status/1107771331012108288: From https://tidyr.tidyverse.org/dev/articles/pivot.html: There are two important new features inspired by other R packages that have been advancing of reshaping in R: The reshaping operation can be specified with a data frame that describes precisely how metadata stored in column names becomes data variables (and vice versa). This is inspired by the cdata package … Continue reading Tidyverse users: gather/spread are on the way out

Unit Tests in R

I am collecting here some notes on testing in R. There seems to be a general (false) impression among non R-core developers that to run tests, R package developers need a test management system such as RUnit or testthat. And a further false impression that testthat is the only R test management system. This is … Continue reading Unit Tests in R

rquery Substitution

The rquery R package has several places where the user can ask for what they have typed in to be substituted for a name or value stored in a variable. This becomes important as many of the rquery commands capture column names from un-executed code. So knowing if something is treated as a symbol/name (which … Continue reading rquery Substitution

“If You Were an R Function, What Function Would You Be?”

We’ve been getting some good uptake on our piping in R article announcement. The article is necessarily a bit technical. But one of its key points comes from the observation that piping into names is a special opportunity to give general objects the following personality quiz: “If you were an R function, what function would … Continue reading “If You Were an R Function, What Function Would You Be?”

More on Macros in R

Recently ran into something interesting in the R macros/quasi-quotation/substitution/syntax front:

It appears !! is no longer the last word in substitution (it certainly wasn’t the first).

The described effect is actually already pretty easy t…

Getting Started With rquery

To make getting started with rquery (an advanced query generator for R) easier we have re-worked the package README for various data-sources (including SparkR!). Here are our current examples: rquery and MonetDBLite rquery and RPostgreSQL rquery and RSQLite rquery and SparkR rquery and sparklyr For the MonetDBLite the query diagrammer shows a repeated calculation that … Continue reading Getting Started With rquery

Query Generation in R

R users have been enjoying the benefits of SQL query generators for quite some time, most notably using the dbplyr package. I would like to talk about some features of our own rquery query generator, concentrating on derived result re-use. Introduction SQL represents value use by nesting. To use a query result within another query … Continue reading Query Generation in R

Function Objects and Pipelines in R

Composing functions and sequencing operations are core programming concepts. Some notable realizations of sequencing or pipelining operations include: Unix’s |-pipe CMS Pipelines. F#‘s forward pipe operator |>. Haskel’s Data.Function & operator. The R magrittr forward pipe. Scikit-learn‘s sklearn.pipeline.Pipeline. The idea is: many important calculations can be considered as a sequence of transforms applied to a … Continue reading Function Objects and Pipelines in R