Category: SymPy

Software to factor integers

In my previous post, I showed how changing one bit of a semiprime (i.e. the product of two primes) creates an integer that can be factored much faster. I started writing that post using Python with SymPy, but moved to Mathematica because factoring took too long. SymPy vs Mathematica When I’m working in Python, SymPy […]

Feller-Tornier constant

Here’s kind of an unusual question: What is the density of integers that have an even number of prime factors with an exponent greater than 1? To define the density, you take the proportion up to an integer N then take the limit as N goes to infinity. It’s not obvious that the limit should […]

An attack on RSA with exponent 3

As I noted in this post, RSA encryption is often carried out reusing exponents. Sometimes the exponent is exponent 3, which is subject to an attack we’ll describe below [1]. (The most common exponent is 65537.) Suppose the same message m is sent to three recipients and all three use exponent e = 3. Each […]

RSA with Pseudoprimes

RSA setup Recall the setup for RSA encryption given in the previous post. Select two very large prime numbers p and q. Compute n = pq and φ(n) = (p – 1)(q – 1). Choose an encryption key e relatively prime to φ(n). Calculate the decryption key d such that ed = 1 (mod φ(n)). Publish e and n, and keep d, p, and q secret. φ is Euler’s totient function, defined here. There’s a complication in the first […]