Category: summary statistics

likelihood-free approximate Gibbs sampling

“Low-dimensional regression-based models are constructed for each of these conditional distributions using synthetic (simulated) parameter value and summary statistic pairs, which then permit approximate Gibbs update steps (…) synthetic datasets are not generated during each sampler iteration, thereby providing efficiencies for expensive simulator models, and only require sufficient synthetic datasets to adequately construct the full […]

selecting summary statistics [a tale of two distances]

As Jonathan Harrison came to give a seminar in Warwick [which I could not attend], it made me aware of his paper with Ruth Baker on the selection of summaries in ABC. The setting is an ABC-SMC algorithm and it relates with Fearnhead and Prangle (2012), Barnes et al. (2012), our own random forest approach, […]

robust Bayesian synthetic likelihood

David Frazier (Monash University) and Chris Drovandi (QUT) have recently come up with a robustness study of Bayesian synthetic likelihood that somehow mirrors our own work with David. In a sense, Bayesian synthetic likelihood is definitely misspecified from the start in assuming a Normal distribution on the summary statistics. When the data generating process is […]

information maximising neural networks summaries

After missing the blood moon eclipse last night, I had a meeting today at the Paris observatory (IAP), where we discussed an ABC proposal made by Tom Charnock, Guilhem Lavaux, and Benjamin Wandelt from this institute. “We introduce a simulation-based machine learning technique that trains artificial neural networks to find non-linear functionals of data that […]

approximate likelihood perspective on ABC

George Karabatsos and Fabrizio Leisen have recently published in Statistics Surveys a fairly complete survey on ABC methods [which earlier arXival I had missed]. Listing within an extensive bibliography of 20 pages some twenty-plus earlier reviews on ABC (with further ones in applied domains)! “(…) any ABC method (algorithm) can be categorized as either (1) […]