A paper on ABC I read on my way back from Cambodia: Yanzhi Chen and Michael Gutmann arXived an ABC [in Edinburgh] paper on learning the target via Gaussian copulas, to be presented at AISTATS this year (in Okinawa!). Linking post-processing (regression) ABC and sequential ABC. The drawback in the regression approach is that the […]

# Category: ABC

## asymptotics of synthetic likelihood [a reply from the authors]

[Here is a reply from David, Chris, and Robert on my earlier comments, highlighting some points I had missed or misunderstood.] Dear Christian Thanks for your interest in our synthetic likelihood paper and the thoughtful comments you wrote about it on your blog. We’d like to respond to the comments to avoid some misconceptions. Your […]

## absint[he] post-doc on approximate Bayesian inference in Paris, Montpellier and Oxford

As a consequence of its funding by the Agence Nationale de la Recherche (ANR) in 2018, the ABSint research conglomerate is now actively recruiting a post-doctoral collaborator for up to 24 months. The accronym ABSint stands for Approximate Bayesian solutions for inference on large datasets and complex models. The ABSint conglomerate involves researchers located in […]

## asymptotics of synthetic likelihood

David Nott, Chris Drovandi and Robert Kohn just arXived a paper on a comparison between ABC and synthetic likelihood, which is both interesting and timely given that synthetic likelihood seems to be lacking behind in terms of theoretical evaluation. I am however as puzzled by the results therein as I was by the earlier paper […]

## auxiliary likelihood ABC in print

Our paper with Gael Martin, Brendan McCabe , David Frazier and Worapree Maneesoonthorn, with full title Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models, has now appeared in JCGS. To think that it started in Rimini in 2009, when I met Gael for the first time at the Rimini Bayesian Econometrics conference, although we […]

## particular degeneracy in ABC model choice

In one of the presentations by the last cohort of OxWaSP students, the group decided to implement an ABC model choice strategy based on sequential ABC inspired from Toni et al. (2008). and this made me reconsider this approach (disclaimer: no criticism of the students implied in the following!). Indeed, the outcome of the simulation […]

## Bayesian intelligence in Warwick

This is an announcement for an exciting CRiSM Day in Warwick on 20 March 2019: with speakers 10:00-11:00 Xiao-Li Meng (Harvard): “Artificial Bayesian Monte Carlo Integration: A Practical Resolution to the Bayesian (Normalizing Constant) Paradox” 11:00-12:00 Julien Stoehr (Dauphine): “Gibbs sampling and ABC” 14:00-15:00 Arthur Ulysse Jacot-Guillarmod (École Polytechnique Fedérale de Lausanne): “Neural Tangent Kernel: […]

## Bayesian intelligence in Warwick

This is an announcement for an exciting CRiSM Day in Warwick on 20 March 2019: with speakers 10:00-11:00 Xiao-Li Meng (Harvard): “Artificial Bayesian Monte Carlo Integration: A Practical Resolution to the Bayesian (Normalizing Constant) Paradox” 11:00-12:00 Julien Stoehr (Dauphine): “Gibbs sampling and ABC” 14:00-15:00 Arthur Ulysse Jacot-Guillarmod (École Polytechnique Fedérale de Lausanne): “Neural Tangent Kernel: […]

## a pen for ABC

Among the flury of papers arXived around the ICML 2019 deadline, I read on my way back from Oxford a paper by Wiqvist et al. on learning summary statistics for ABC by neural nets. Pointing out at another recent paper by Jiang et al. (2017, Statistica Sinica) which constructed a neural network for predicting each […]

## information maximising neural networks summaries

After missing the blood moon eclipse last night, I had a meeting today at the Paris observatory (IAP), where we discussed an ABC proposal made by Tom Charnock, Guilhem Lavaux, and Benjamin Wandelt from this institute. “We introduce a simulation-based machine learning technique that trains artificial neural networks to find non-linear functionals of data that […]

## Computational Bayesian Statistics [book review]

This Cambridge University Press book by M. Antónia Amaral Turkman, Carlos Daniel Paulino, and Peter Müller is an enlarged translation of a set of lecture notes in Portuguese. (Warning: I have known Peter Müller from his PhD years in Purdue University and cannot pretend to perfect objectivity. For one thing, Peter once brought me frozen-solid […]

## prepaid ABC

Merijn Mestdagha, Stijn Verdoncka, Kristof Meersa, Tim Loossensa, and Francis Tuerlinckx from the KU Leuven, some of whom I met during a visit to its Wallon counterpart Louvain-La-Neuve, proposed and arXived a new likelihood-free approach based on saving simulations on a large scale for future users. Future users interested in the same model. The very […]

## a book and three chapters on ABC

In connection with our handbook on mixtures being published, here are three chapters I contributed to from the Handbook of ABC, edited by Scott Sisson, Yanan Fan, and Mark Beaumont: 6. Likelihood-free Model Choice, by J.-M. Marin, P. Pudlo, A. Estoup and C.P. Robert 12. Approximating the Likelihood in ABC, by C. C. Drovandi, C. […]

## a good start in Series B!

Just received the great news for the turn of the year that our paper on ABC using Wasserstein distance was accepted in Series B! Inference in generative models using the Wasserstein distance, written by Espen Bernton, Pierre Jacob, Mathieu Gerber, and myself, bypasses the (nasty) selection of summary statistics in ABC by considering the Wasserstein […]

## approximate likelihood perspective on ABC

George Karabatsos and Fabrizio Leisen have recently published in Statistics Surveys a fairly complete survey on ABC methods [which earlier arXival I had missed]. Listing within an extensive bibliography of 20 pages some twenty-plus earlier reviews on ABC (with further ones in applied domains)! “(…) any ABC method (algorithm) can be categorized as either (1) […]

## a glaringly long explanation

It is funny that, when I am teaching the rudiments of Bayesian statistics to my undergraduate students in Paris-Dauphine, including ABC via Rasmus’ socks, specific questions about the book (The Bayesian Choice) start popping up on X validated! Last week was about the proof that ABC is exact when the tolerance is zero. And the […]