Category: Statistics

Parsimonious principle vs integration over all uncertainties

tl;dr If you have bad models, bad priors or bad inference choose the simplest possible model. If you have good models, good priors, good inference, use the most elaborate model for predictions. To make interpretation easier you may use a smaller model with similar predictive performance as the most elaborate model. Merijn Mestdagh emailed me […]

The post Parsimonious principle vs integration over all uncertainties appeared first on Statistical Modeling, Causal Inference, and Social Science.

Parsimonious principle vs integration over all uncertainties

tl;dr If you have bad models, bad priors or bad inference choose the simplest possible model. If you have good models, good priors, good inference, use the most elaborate model for predictions. To make interpretation easier you may use a smaller model with similar predictive performance as the most elaborate model. Merijn Mestdagh emailed me […]

The post Parsimonious principle vs integration over all uncertainties appeared first on Statistical Modeling, Causal Inference, and Social Science.

Advice on soft skills for academics

Julia Hirschberg sent this along to the natural language processing mailing list at Columbia: here are some slides from last spring’s CRA-W Grad Cohort and previous years that might be of interest. all sorts of topics such as interviewing, building confidence, finding a thesis topic, preparing your thesis proposal, publishing, entrepreneurialism, and a very interesting […]

The post Advice on soft skills for academics appeared first on Statistical Modeling, Causal Inference, and Social Science.

Advice on “soft skills” for academics

Julia Hirschberg sent this along to the natural language processing mailing list at Columbia: here are some slides from last spring’s CRA-W Grad Cohort and previous years that might be of interest. all sorts of topics such as interviewing, building confidence, finding a thesis topic, preparing your thesis proposal, publishing, entrepreneurialism, and a very interesting […]

The post Advice on “soft skills” for academics appeared first on Statistical Modeling, Causal Inference, and Social Science.

Journals and refereeing: toward a new equilibrium

As we’ve discussed before (see also here), one of the difficulties of moving from our current system of review of scientific journal articles, to a new model of post-publication review, is that any major change seems likely to break the current “gift economy” system in which thousands of scientists put in millions of hours providing […]

The post Journals and refereeing: toward a new equilibrium appeared first on Statistical Modeling, Causal Inference, and Social Science.

Journals and refereeing: toward a new equilibrium

As we’ve discussed before (see also here), one of the difficulties of moving from our current system of review of scientific journal articles, to a new model of post-publication review, is that any major change seems likely to break the current “gift economy” system in which thousands of scientists put in millions of hours providing […]

The post Journals and refereeing: toward a new equilibrium appeared first on Statistical Modeling, Causal Inference, and Social Science.

Recently in the sister blog

In the article, “Testing the role of convergence in language acquisition, with implications for creole genesis,” Marlyse Baptista et al. write: The main objective of this paper is to test experimentally the role of convergence in language acquisition (second language acquisition specifically), with implications for creole genesis. . . . Our experiment is unique on […]

The post Recently in the sister blog appeared first on Statistical Modeling, Causal Inference, and Social Science.

Recently in the sister blog

In the article, “Testing the role of convergence in language acquisition, with implications for creole genesis,” Marlyse Baptista et al. write: The main objective of this paper is to test experimentally the role of convergence in language acquisition (second language acquisition specifically), with implications for creole genesis. . . . Our experiment is unique on […]

The post Recently in the sister blog appeared first on Statistical Modeling, Causal Inference, and Social Science.

Partitioning the Variation in Data

One of the fundamental questions that we can ask in any data analysis is, “Why do things vary?” Although I think this is fundamental, I’ve found that it’s not explicitly asked as often as I might think. The problem with not asking this qu…

Of statistics class and judo class: Beyond the paradigm of sequential education

In judo class they kinda do the same thing every time: you warm up and then work on different moves. Different moves in different classes, and there are different levels, but within any level the classes don’t really have a sequence. You just start where you start, practice over and over, and gradually improve. Different […]

The post Of statistics class and judo class: Beyond the paradigm of sequential education appeared first on Statistical Modeling, Causal Inference, and Social Science.

Of statistics class and judo class: Beyond the paradigm of sequential education

In judo class they kinda do the same thing every time: you warm up and then work on different moves. Different moves in different classes, and there are different levels, but within any level the classes don’t really have a sequence. You just start where you start, practice over and over, and gradually improve. Different […]

The post Of statistics class and judo class: Beyond the paradigm of sequential education appeared first on Statistical Modeling, Causal Inference, and Social Science.

3 YEARS AGO (JULY 2015): MEMORY LANE

MONTHLY MEMORY LANE: 3 years ago: July 2015. I mark in red 3-4 posts from each month that seem most apt for general background on key issues in this blog, excluding those reblogged recently[1], and in green up to 3 others of general relevance to philosophy of statistics [2].  Posts that are part of a “unit” or a group count as one. July […]

“A Headline That Will Make Global-Warming Activists Apoplectic”

I saw this article in the newspaper today, “2017 Was One of the Hottest Years on Record. And That Was Without El Niño,” subtitled, “The world in 2017 saw some of the highest average surface temperatures ever recorded, surprising scientists who had expected sharper retreat from recent record years,” and accompanied by the above graph, […]

The post “A Headline That Will Make Global-Warming Activists Apoplectic” appeared first on Statistical Modeling, Causal Inference, and Social Science.

“A Headline That Will Make Global-Warming Activists Apoplectic”

I saw this article in the newspaper today, “2017 Was One of the Hottest Years on Record. And That Was Without El Niño,” subtitled, “The world in 2017 saw some of the highest average surface temperatures ever recorded, surprising scientists who had expected sharper retreat from recent record years,” and accompanied by the above graph, […]

The post “A Headline That Will Make Global-Warming Activists Apoplectic” appeared first on Statistical Modeling, Causal Inference, and Social Science.

Stan short course in NYC in 2.5 weeks

To all who may be interested:
Jonah Gabry, Stan developer and creator of ShinyStan, will be giving a short course downtown, from 6-8 Aug. Details here.
Jonah has taught Stan courses before, and he knows what he’s doing.
The post Stan short cours…

“The idea of replication is central not just to scientific practice but also to formal statistics . . . Frequentist statistics relies on the reference set of repeated experiments, and Bayesian statistics relies on the prior distribution which represents the population of effects.”

Rolf Zwaan (who we last encountered here in “From zero to Ted talk in 18 simple steps”), Alexander Etz, Richard Lucas, and M. Brent Donnellan wrote an article, “Making replication mainstream,” which begins: Many philosophers of science and methodologists have argued that the ability to repeat studies and obtain similar results is an essential component […]

The post “The idea of replication is central not just to scientific practice but also to formal statistics . . . Frequentist statistics relies on the reference set of repeated experiments, and Bayesian statistics relies on the prior distribution which represents the population of effects.” appeared first on Statistical Modeling, Causal Inference, and Social Science.