Sri Lanka has a rapidly growing tourism industry, two international tourism seasons, and seasonality patterns in arrivals that vary according to country of origin.

# Category: Statistics

## You’ve got data on 35 countries, but it’s really just N=3 groups.

Jon Baron points to a recent article, “Societal inequalities amplify gender gaps in math,” by Thomas Breda, Elyès Jouini, and Clotilde Napp (supplementary materials here), and writes: A particular issue bothers me whenever I read studies like this, which use nations as the unit of analysis and then make some inference from correlations across nations. […]

The post You’ve got data on 35 countries, but it’s really just N=3 groups. appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Don’t calculate post-hoc power using observed estimate of effect size

Aleksi Reito writes: The statement below was included in a recent issue of Annals of Surgery: But, as 80% power is difficult to achieve in surgical studies, we argue that the CONSORT and STROBE guidelines should be modified to include the disclosure of power—even if less than 80%—with the given sample size and effect size […]

The post Don’t calculate post-hoc power using observed estimate of effect size appeared first on Statistical Modeling, Causal Inference, and Social Science.

## “Tweeking”: The big problem is not where you think it is.

In her recent article about pizzagate, Stephanie Lee included this hilarious email from Brian Wansink, the self-styled “world-renowned eating behavior expert for over 25 years”: OK, what grabs your attention is that last bit about “tweeking” the data to manipulate the p-value, where Wansink is proposing research misconduct (from NIH: “Falsification: Manipulating research materials, equipment, […]

The post “Tweeking”: The big problem is not where you think it is. appeared first on Statistical Modeling, Causal Inference, and Social Science.

## All She Wrote (so far): Error Statistics Philosophy: 7 years on

Error Statistics Philosophy: Blog Contents (7 years) [i] By: D. G. Mayo Dear Reader: I began this blog 7 years ago (Sept. 3, 2011)! A big celebration is taking place at the Elbar Room this evening, both for the blog and the appearance of my new book: Statistical Inference as Severe Testing: How to Get Beyond the […]

## Multilevel data collection and analysis for weight training (with R code)

[image of cat lifting weights] A graduate student who wishes to remain anonymous writes: I was wondering if you could answer an elementary question which came to mind after reading your article with Carlin on retrospective power analysis. Consider the field of exercise science, and in particular studies on people who lift weights. (I sometimes […]

The post Multilevel data collection and analysis for weight training (with R code) appeared first on Statistical Modeling, Causal Inference, and Social Science.

## A psychology researcher uses Stan, multiverse, and open data exploration to explore human memory

Under the heading, “An example of Stan to the rescue, multiverse analysis, and psychologists trying to do well,” Greg Cox writes: I’m currently a postdoc at Syracuse University studying how human memory works. I wanted to forward a paper of ours [“Information and Processes Underlying Semantic and Episodic Memory Across Tasks, Items, and Individuals,” by […]

The post A psychology researcher uses Stan, multiverse, and open data exploration to explore human memory appeared first on Statistical Modeling, Causal Inference, and Social Science.

## How to graph a function of 4 variables using a grid

This came up in response to a student’s question. I wrote that, in general, you can plot a function y(x) on a simple graph. You can plot y(x,x2) by plotting y vs x and then having several lines showing different values of x2 (for example, x2=0, x2=0.5, x2=1, x2=1.5, x2=2, etc). You can plot y(x,x2,x3,x4) […]

The post How to graph a function of 4 variables using a grid appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Post-publication peer review: who’s qualified?

Gabriel Power writes: I don’t recall that you addressed this point in your posts on post-publication peer review [for example, here and here — ed.]. Who would be allowed to post reviews of a paper? Anyone? Only researchers? Only experts? Science is not a democracy. A study is not valid because a majority of people […]

The post Post-publication peer review: who’s qualified? appeared first on Statistical Modeling, Causal Inference, and Social Science.

## A couple more papers on genetic diversity as an explanation for why Africa and remote Andean countries are so poor while Europe and North America are so wealthy

Back in 2013, I wrote a post regarding a controversial claim that high genetic diversity, or low genetic diversity, is bad for the economy: Two economics professors, Quamrul Ashraf and Oded Galor, wrote a paper, “The Out of Africa Hypothesis, Human Genetic Diversity, and Comparative Economic Development,” that is scheduled to appear in the American […]

The post A couple more papers on genetic diversity as an explanation for why Africa and remote Andean countries are so poor while Europe and North America are so wealthy appeared first on Statistical Modeling, Causal Inference, and Social Science.

## The hot hand—in darts!

Roland Langrock writes: Since on your blog you’ve regularly been discussing hot hand literature – which we closely followed – I’m writing to share with you a new working paper we wrote on a potential hot hand pattern in professional darts. We use state-space models in which a continuous-valued latent “hotness” variable, modeled as an […]

The post The hot hand—in darts! appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Why, oh why, do so many people embrace the Pacific Garbage Cleanup nonsense? (I have a theory).

This post is by Phil, not Andrew. Over the couple of months I have seen quite a few people celebrating the long-awaited launch of a big device that will remove plastic garbage from the Pacific ocean. I find this frustrating because this project makes no sense even if the device works as intended: at best […]

The post Why, oh why, do so many people embrace the Pacific Garbage Cleanup nonsense? (I have a theory). appeared first on Statistical Modeling, Causal Inference, and Social Science.

## What to do when your measured outcome doesn’t quite line up with what you’re interested in?

Matthew Poes writes: I’m writing a research memo discussing the importance of precisely aligning the outcome measures to the intervention activities. I’m making the point that an evaluation of the outcomes for a given intervention may net null results for many reasons, one of which could simply be that you are looking in the wrong […]

The post What to do when your measured outcome doesn’t quite line up with what you’re interested in? appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Don’t get fooled by observational correlations

Gabriel Power writes: Here’s something a little different: clever classrooms, according to which physical characteristics of classrooms cause greater learning. And the effects are large! Moving from the worst to the best design implies a gain of 67% of one year’s worth of learning! Aside from the dubiously large effect size, it looks like the […]

The post Don’t get fooled by observational correlations appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Columbia Data Science Institute art contest

This is a great idea! Unfortunately, only students at Columbia can submit. I encourage other institutions to do such contests too. We did something similar at Columbia, maybe 10 or 15 years ago? It went well, we just didn’t have the energy to do it again every year, as we’d initially planned. So I’m very […]

The post Columbia Data Science Institute art contest appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Excursion 1 Tour I (3rd stop): The Current State of Play in Statistical Foundations: A View From a Hot-Air Balloon (1.3)

How can a discipline, central to science and to critical thinking, have two methodologies, two logics, two approaches that frequently give substantively different answers to the same problems? … Is complacency in the face of contradiction acceptable for a central discipline of science? (Donald Fraser 2011, p. 329) We [statisticians] are not blameless … we […]

## High-profile statistical errors occur in the physical sciences too, it’s not just a problem in social science.

In an email with subject line, “Article full of forking paths,” John Williams writes: I thought you might be interested in this article by John Sabo et al., which was the cover article for the Dec. 8 issue of Science. The article is dumb in various ways, some of which are described in the technical […]

The post High-profile statistical errors occur in the physical sciences too, it’s not just a problem in social science. appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Echo Chamber Incites Online Mob to Attack Math Profs

The story starts as follows: There’s evidence for greater variability in the distribution of men, compared to women, in various domains. Two math professors, Theodore Hill and Sergei Tabachnikov, wrote an article exploring a mathematical model for the evolution of this difference in variation, and send the article to the Mathematical Intelligencer, a magazine that […]

The post Echo Chamber Incites Online Mob to Attack Math Profs appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Divergent and Convergent Phases of Data Analysis

There are often discussions within the data science community about which tools are best for doing data science. The most recent iteration of this discussion is the so-called “First Notebook War”, which is well-summarized by Yihui Xie in his blog pos…

## N=1 survey tells me Cynthia Nixon will lose by a lot (no joke)

Yes, you can learn a lot from N=1, as long as you have some auxiliary information. The other day I was talking with a friend who’s planning to vote for Andrew Cuomo in the primary. What about Cynthia Nixon? My friend wasn’t even considering voting for her. Now, my friend is, I think, in the […]

The post N=1 survey tells me Cynthia Nixon will lose by a lot (no joke) appeared first on Statistical Modeling, Causal Inference, and Social Science.