Aki points us to this paper by Tore Selland Kleppe, which begins: Dynamically rescaled Hamiltonian Monte Carlo (DRHMC) is introduced as a computationally fast and easily implemented method for performing full Bayesian analysis in hierarchical statistical models. The method relies on introducing a modified parameterisation so that the re-parameterised target distribution has close to constant […]

The post “Dynamically Rescaled Hamiltonian Monte Carlo for Bayesian Hierarchical Models” appeared first on Statistical Modeling, Causal Inference, and Social Science.