Category: Statistical computing

My two talks in Montreal this Friday, 22 Mar

McGill University Biostatistics seminar, Purvis Hall, 102 Pine Ave. West, Room 25, 1-2pm Fri 22 Mar: Resolving the Replication Crisis Using Multilevel Modeling In recent years we have come to learn that many prominent studies in social science and medicine, conducted at leading research institutions, published in top journals, and publicized in respected news outlets, […]

stanc3: rewriting the Stan compiler

I’d like to introduce the stanc3 project, a complete rewrite of the Stan 2 compiler in OCaml. Join us! With this rewrite and migration to OCaml, there’s a great opportunity to join us on the ground floor of a new era. Your enthusiasm for or expertise in programming language theory and compiler development can help […]

HMC step size: How does it scale with dimension?

A bunch of us were arguing about how the Hamiltonian Monte Carlo step size should scale with dimension, and so Bob did the Bob thing and just ran an experiment on the computer to figure it out. Bob writes: This is for standard normal independent in all dimensions. Note the log scale on the x […]

R fixed its default histogram bin width!

I remember hist() in R as having horrible defaults, with the histogram bars way too wide. (See this discussion: A key benefit of a histogram is that, as a plot of raw data, it contains the seeds of its own error assessment. Or, to put it another way, the jaggedness of a slightly undersmoothed histogram […]

Should he go to grad school in statistics or computer science?

Someone named Nathan writes: I am an undergraduate student in statistics and a reader of your blog. One thing that you’ve been on about over the past year is the difficulty of executing hypothesis testing correctly, and an apparent desire to see researchers move away from that paradigm. One thing I see you mention several […]

NYC Meetup Thursday: Under the hood: Stan’s library, language, and algorithms

I (Bob, not Andrew!) will be doing a meetup talk next Thursday in New York City. Here’s the link with registration and location and time details (summary: pizza unboxing at 6:30 pm in SoHo): Bayesian Data Analysis Meetup: Under the hood: Stan’s library, language, and algorithms After summarizing what Stan does, this talk will focus […]

The post NYC Meetup Thursday: Under the hood: Stan’s library, language, and algorithms appeared first on Statistical Modeling, Causal Inference, and Social Science.

Reproducibility and Stan

Aki prepared these slides which cover a series of topics, starting with notebooks, open code, and reproducibility of code in R and Stan; then simulation-based calibration of algorithms; then model averaging and prediction. Lots to think about here: t…

Reproducibility and Stan

Aki prepared these slides which cover a series of topics, starting with notebooks, open code, and reproducibility of code in R and Stan; then simulation-based calibration of algorithms; then model averaging and prediction. Lots to think about here: t…

How we should they carry out repeated cross-validation? They would like a third expert opinion…”

Someone writes: I’m a postdoc studying scientific reproducibility. I have a machine learning question that I desperately need your help with. . . . I’m trying to predict whether a study can be successfully replicated (DV), from the texts in the original published article. Our hypothesis is that language contains useful signals in distinguishing reproducible […]

The post How we should they carry out repeated cross-validation? They would like a third expert opinion…” appeared first on Statistical Modeling, Causal Inference, and Social Science.

“My advisor and I disagree on how we should carry out repeated cross-validation. We would love to have a third expert opinion…”

Youyou Wu writes: I’m a postdoc studying scientific reproducibility. I have a machine learning question that I desperately need your help with. My advisor and I disagree on how we should carry out repeated cross-validation. We would love to have a third expert opinion… I’m trying to predict whether a study can be successfully replicated […]

The post “My advisor and I disagree on how we should carry out repeated cross-validation. We would love to have a third expert opinion…” appeared first on Statistical Modeling, Causal Inference, and Social Science.

“Do you have any recommendations for useful priors when datasets are small?”

A statistician who works in the pharmaceutical industry writes: I just read your paper (with Dan Simpson and Mike Betancourt) “The Prior Can Often Only Be Understood in the Context of the Likelihood” and I find it refreshing to read that “the practical utility of a prior distribution within a given analysis then depends critically […]

The post “Do you have any recommendations for useful priors when datasets are small?” appeared first on Statistical Modeling, Causal Inference, and Social Science.

“Do you have any recommendations for useful priors when datasets are small?”

A statistician who works in the pharmaceutical industry writes: I just read your paper (with Dan Simpson and Mike Betancourt) “The Prior Can Often Only Be Understood in the Context of the Likelihood” and I find it refreshing to read that “the practical utility of a prior distribution within a given analysis then depends critically […]

The post “Do you have any recommendations for useful priors when datasets are small?” appeared first on Statistical Modeling, Causal Inference, and Social Science.

Hey, check this out: Columbia’s Data Science Institute is hiring research scientists and postdocs!

Here’s the official announcement: The Institute’s Postdoctoral and Research Scientists will help anchor Columbia’s presence as a leader in data-science research and applications and serve as resident experts in fostering collaborations with the world-class faculty across all schools at Columbia University. They will also help guide, plan and execute data-science research, applications and technological innovations […]

The post Hey, check this out: Columbia’s Data Science Institute is hiring research scientists and postdocs! appeared first on Statistical Modeling, Causal Inference, and Social Science.

“Simulations are not scalable but theory is scalable”

Eren Metin Elçi writes: I just watched this video the value of theory in applied fields (like statistics), it really resonated with my previous research experiences in statistical physics and on the interplay between randomised perfect sampling algorithms and Markov Chain mixing as well as my current perspective on the status quo of deep learning. […]

The post “Simulations are not scalable but theory is scalable” appeared first on Statistical Modeling, Causal Inference, and Social Science.

Stan development in RStudio

Check this out! RStudio now has special features for Stan: – Improved, context-aware autocompletion for Stan files and chunks – A document outline, which allows for easy navigation between Stan code blocks – Inline diagnostics, which help to find issues while you develop your Stan model – The ability to interrupt Stan parallel workers launched […]

The post Stan development in RStudio appeared first on Statistical Modeling, Causal Inference, and Social Science.

Limitations of “Limitations of Bayesian Leave-One-Out Cross-Validation for Model Selection”

“If you will believe in your heart and confess with your lips, surely you will be saved one day” – The Mountain Goats paraphrasing Romans 10:9 One of the weird things about working with people a lot is that it doesn’t always translate into multiple opportunities to see them talk.  I’m pretty sure the only […]

The post Limitations of “Limitations of Bayesian Leave-One-Out Cross-Validation for Model Selection” appeared first on Statistical Modeling, Causal Inference, and Social Science.