Category: Pragmatic Data Science

Why we Did Not Name the cdata Transforms wide/tall/long/short

We recently saw this UX (user experience) question from the tidyr author as he adapts tidyr to cdata techniques. The terminology that he is not adopting from cdata is “unpivot_to_blocks()” and “pivot_to_rowrecs()”. One of the research ideas in the cdata package is that the important thing to call out is record structure. The important point … Continue reading Why we Did Not Name the cdata Transforms wide/tall/long/short

Tidyverse users: gather/spread are on the way out

From https://twitter.com/sharon000/status/1107771331012108288: From https://tidyr.tidyverse.org/dev/articles/pivot.html: There are two important new features inspired by other R packages that have been advancing of reshaping in R: The reshaping operation can be specified with a data frame that describes precisely how metadata stored in column names becomes data variables (and vice versa). This is inspired by the cdata package … Continue reading Tidyverse users: gather/spread are on the way out

Starting With Data Science: A Rigorous Hands-On Introduction to Data Science for Engineers

Starting With Data Science A rigorous hands-on introduction to data science for engineers. Win Vector LLC is now offering a 4 day on-site intensive data science course. The course targets engineers familiar with Python and introduces them to the basics of current data science practice. This is designed as an interactive in-person (not remote or … Continue reading Starting With Data Science: A Rigorous Hands-On Introduction to Data Science for Engineers

PDSwR2: New Chapters!

We have two new chapters of Practical Data Science with R, Second Edition online and available for review! The newly available chapters cover: Data Engineering And Data Shaping – Explores how to use R to organize or wrangle data into a shape useful for analysis. The chapter covers applying data transforms, data manipulation packages, and … Continue reading PDSwR2: New Chapters!

vtreat Variable Importance

vtreat‘s purpose is to produce pure numeric R data.frames that are ready for supervised predictive modeling (predicting a value from other values). By ready we mean: a purely numeric data frame with no missing values and a reasonable number of columns (missing-values re-encoded with indicators, and high-degree categorical re-encode by effects codes or impact codes). … Continue reading vtreat Variable Importance