I was going to write a post with the above title, but now I don’t remember what I was going to say!

The post From no-data to data: The awkward transition appeared first on Statistical Modeling, Causal Inference, and Social Science.

# Category: Decision Theory

## From no-data to data: The awkward transition

I was going to write a post with the above title, but now I don’t remember what I was going to say!

The post From no-data to data: The awkward transition appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Where that title came from

I could not think of a good title for this post. My first try was “An institutional model for the persistence of false belief, but I don’t think it’s helpful to describe scientific paradigms as ‘true’ or ‘false.’ Also, boo on cheap laughs at the expense of academia,” and later attempts were even worse. At […]

The post Where that title came from appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Where that title came from

I could not think of a good title for this post. My first try was “An institutional model for the persistence of false belief, but I don’t think it’s helpful to describe scientific paradigms as ‘true’ or ‘false.’ Also, boo on cheap laughs at the expense of academia,” and later attempts were even worse. At […]

The post Where that title came from appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Data-based ways of getting a job

Bart Turczynski writes: I read the following blog with a lot of excitement: Then I reread it and paid attention to the graphs and models (which don’t seem to be actual models, but rather, well, lines.) The story makes sense, but the science part is questionable (or at least unclear.) Perhaps you’d like to have […]

The post Data-based ways of getting a job appeared first on Statistical Modeling, Causal Inference, and Social Science.

## On deck through the rest of the year

July: The Ponzi threshold and the Armstrong principle Flaws in stupid horrible algorithm revealed because it made numerical predictions PNAS forgets basic principles of game theory, thus dooming thousands of Bothans to the fate of Alderaan Tutorial: The practical application of complicated statistical methods to fill up the scientific literature with confusing and irrelevant analyses […]

The post On deck through the rest of the year appeared first on Statistical Modeling, Causal Inference, and Social Science.

## The “Psychological Science Accelerator”: it’s probably a good idea but I’m still skeptical

Asher Meir points us to this post by Christie Aschwanden entitled, “Can Teamwork Solve One Of Psychology’s Biggest Problems?”, which begins: Psychologist Christopher Chartier admits to a case of “physics envy.” That field boasts numerous projects on which international research teams come together to tackle big questions. Just think of CERN’s Large Hadron Collider or […]

The post The “Psychological Science Accelerator”: it’s probably a good idea but I’m still skeptical appeared first on Statistical Modeling, Causal Inference, and Social Science.

## What is the role of statistics in a machine-learning world?

I just happened to come across this quote from Dan Simpson:

When the signal-to-noise ratio is high, modern machine learning methods trounce classical statistical methods when it comes to prediction. The role of statistics in this case is really to boos…

## Ways of knowing in computer science and statistics

Brad Groff writes: Thought you might find this post by Ferenc Huszar interesting. Commentary on how we create knowledge in machine learning research and how we resolve benchmark results with (belated) theory. Key passage: You can think of “making a a deep learning method work on a dataset” as a statistical test. I would argue […]

The post Ways of knowing in computer science and statistics appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Answering the question, What predictors are more important?, going beyond p-value thresholding and ranking

Daniel Kapitan writes: We are in the process of writing a paper on the outcome of cataract surgery. A (very rough!) draft can be found here, to provide you with some context: https://www.overleaf.com/read/wvnwzjmrffmw. Using standard classification methods (Python sklearn, with synthetic oversampling to address the class imbalance), we are able to predict a poor outcome […]

The post Answering the question, What predictors are more important?, going beyond p-value thresholding and ranking appeared first on Statistical Modeling, Causal Inference, and Social Science.

## Chasing the noise in industrial A/B testing: what to do when all the low-hanging fruit have been picked?

Commenting on this post on the “80% power” lie, Roger Bohn writes: The low power problem bugged me so much in the semiconductor industry that I wrote 2 papers about around 1995. Variability estimates come naturally from routine manufacturing statistics, which in semicon were tracked carefully because they are economically important. The sample size is […]

The post Chasing the noise in industrial A/B testing: what to do when all the low-hanging fruit have been picked? appeared first on Statistical Modeling, Causal Inference, and Social Science.

## About that quasi-retracted study on the Mediterranean diet . . .

Some people asked me what I thought about this story. A reporter wrote to me about it last week, asking if it looked like fraud. Here’s my reply: Based on the description, there does not seem to be the implication of fraud. The editor’s report mentioned “protocol deviations, including the enrollment of participants who were […]

The post About that quasi-retracted study on the Mediterranean diet . . . appeared first on Statistical Modeling, Causal Inference, and Social Science.