It has been only two months since I summarized my reviews of point-and-click front ends for R, and it’s already out of date! I have converted that post into a regularly-updated article and added a plot of total features, which … Continue reading →

# Category: data science

## Estimating Rates using Probability Theory: Chalk Talk

We are sharing a chalk talk rehearsal on applied probability. We use basic notions of probability theory to work through the estimation of sample size needed to reliably estimate event rates. This expands basic calculations, and then moves to the idea…

## Technical books are amazing opportunities

Nina and I have been sending out drafts of our book Practical Data Science with R 2nd Edition for technical review. A few of the reviews came back from reviewers that described themselves with variations of: Senior Business Analyst for COMPANYNAME. I have been involved in presenting graphs of data for many years. To us … Continue reading Technical books are amazing opportunities

## Data Science Jobs Report 2019: Python Way Up, Tensorflow Growing Rapidly, R Use Double SAS

In my ongoing quest to track The Popularity of Data Science Software, I’ve just updated my analysis of the job market. To save you from reading the entire tome, I’m reproducing that section here. Continue reading →

## What is “Tidy Data”

I would like to write a bit on the meaning and history of the phrase “tidy data.” Hadley Wickham has been promoting the term “tidy data.” For example in an eponymous paper, he wrote: In tidy data: Each variable forms a column. Each observation forms a row. Each type of observational unit forms a table. … Continue reading What is “Tidy Data”

## Could not Resist

Also, Practical Data Science with R, 2nd Edition; Zumel, Mount; Manning 2019 is now content complete! It is deep into editing and soon into production!

## Data Layout Exercises

John Mount, Nina Zumel; Win-Vector LLC 2019-04-27 In this note we will use five real life examples to demonstrate data layout transforms using the cdata R package. The examples for this note are all demo-examples from tidyr/demo/, and are mostly based on questions posted to StackOverflow. They represent a good cross-section of data layout problems, … Continue reading Data Layout Exercises

## Comparing Point-and-Click Front Ends for R

Now that I’ve completed seven detailed reviews of Graphical User Interfaces (GUIs) for R, let’s try to compare them. It’s easy enough to count their features and plot them, so let’s start there. Continue reading →

## A Comparative Review of the JASP Statistical Software

JASP is a free and open source statistics package that targets beginners looking to point-and-click their way through analyses. This article is one of a series of reviews which aim to help non-programmers choose the Graphical User Interface (GUI) for R, which best meets their needs. Continue reading →

## Data Science Software Used in Journals: Stat Packages Declining (including R), AI/ML Software Growing

In my neverending quest to track The Popularity of Data Science Software, it’s time to update the section on Scholarly Articles. The rapid growth of R could not go on forever and, as you’ll see below, its use actually declined … Continue reading →

## Data Science Software Reviews: Forrester vs. Gartner

In my previous post, I discussed Gartner’s reviews of data science software companies. In this post, I show Forrester’s coverage and discuss how radically different it is. As usual, this post is already integrated into my regularly-updated article, The Popularity of Data Science Software. Continue reading →

## Data Manipulation Corner Cases

Let’s try some “ugly corner cases” for data manipulation in R. Corner cases are examples where the user might be running to the edge of where the package developer intended their package to work, and thus often where things can go wrong. Let’s see what happens when we try to stick a fork in the … Continue reading Data Manipulation Corner Cases

## Starting With Data Science: A Rigorous Hands-On Introduction to Data Science for Engineers

Starting With Data Science A rigorous hands-on introduction to data science for engineers. Win Vector LLC is now offering a 4 day on-site intensive data science course. The course targets engineers familiar with Python and introduces them to the basics of current data science practice. This is designed as an interactive in-person (not remote or … Continue reading Starting With Data Science: A Rigorous Hands-On Introduction to Data Science for Engineers

## rquery Substitution

The rquery R package has several places where the user can ask for what they have typed in to be substituted for a name or value stored in a variable. This becomes important as many of the rquery commands capture column names from un-executed code. So knowing if something is treated as a symbol/name (which … Continue reading rquery Substitution

## Gartner’s 2019 Take on Data Science Software

I’ve just updated The Popularity of Data Science Software to reflect my take on Gartner’s 2019 report, Magic Quadrant for Data Science and Machine Learning Platforms. To save you the trouble of digging through all 40+ pages of my report, here’s just the updated section: Continue reading →

## Query Generation in R

R users have been enjoying the benefits of SQL query generators for quite some time, most notably using the dbplyr package. I would like to talk about some features of our own rquery query generator, concentrating on derived result re-use. Introduction SQL represents value use by nesting. To use a query result within another query … Continue reading Query Generation in R

## PDSwR2 Free Excerpt and New Discount Code

Manning has a new discount code and a free excerpt of our book Practical Data Science with R, 2nd Edition: here.

This section is elementary, but things really pick up speed as later on (also available in a paid preview).

## cdata Control Table Keys

In our cdata R package and training materials we emphasize the record-oriented thinking and how to design a transform control table. We now have an additional exciting new feature: control table keys. The user can now control which columns of a cdata control table are the keys, including now using composite keys (that is keys … Continue reading cdata Control Table Keys

## PDSwR2: New Chapters!

We have two new chapters of Practical Data Science with R, Second Edition online and available for review! The newly available chapters cover: Data Engineering And Data Shaping – Explores how to use R to organize or wrangle data into a shape useful for analysis. The chapter covers applying data transforms, data manipulation packages, and … Continue reading PDSwR2: New Chapters!

## Function Objects and Pipelines in R

Composing functions and sequencing operations are core programming concepts. Some notable realizations of sequencing or pipelining operations include: Unix’s |-pipe CMS Pipelines. F#‘s forward pipe operator |>. Haskel’s Data.Function & operator. The R magrittr forward pipe. Scikit-learn‘s sklearn.pipeline.Pipeline. The idea is: many important calculations can be considered as a sequence of transforms applied to a … Continue reading Function Objects and Pipelines in R