Category: data science

Query Generation in R

R users have been enjoying the benefits of SQL query generators for quite some time, most notably using the dbplyr package. I would like to talk about some features of our own rquery query generator, concentrating on derived result re-use. Introduction SQL represents value use by nesting. To use a query result within another query … Continue reading Query Generation in R

PDSwR2: New Chapters!

We have two new chapters of Practical Data Science with R, Second Edition online and available for review! The newly available chapters cover: Data Engineering And Data Shaping – Explores how to use R to organize or wrangle data into a shape useful for analysis. The chapter covers applying data transforms, data manipulation packages, and … Continue reading PDSwR2: New Chapters!

Function Objects and Pipelines in R

Composing functions and sequencing operations are core programming concepts. Some notable realizations of sequencing or pipelining operations include: Unix’s |-pipe CMS Pipelines. F#‘s forward pipe operator |>. Haskel’s Data.Function & operator. The R magrittr forward pipe. Scikit-learn‘s sklearn.pipeline.Pipeline. The idea is: many important calculations can be considered as a sequence of transforms applied to a … Continue reading Function Objects and Pipelines in R

vtreat Variable Importance

vtreat‘s purpose is to produce pure numeric R data.frames that are ready for supervised predictive modeling (predicting a value from other values). By ready we mean: a purely numeric data frame with no missing values and a reasonable number of columns (missing-values re-encoded with indicators, and high-degree categorical re-encode by effects codes or impact codes). … Continue reading vtreat Variable Importance