Category: Biometrika

down with Galton (and Pearson and Fisher…)

In the last issue of Significance, which I read in Warwick prior to the conference, there is a most interesting article on Galton’s eugenics, his heritage at University College London (UCL), and the overall trouble with honouring prominent figures of the past with memorials like named building or lectures… The starting point of this debate […]

dynamic nested sampling for stars

In the sequel of earlier nested sampling packages, like MultiNest, Joshua Speagle has written a new package called dynesty that manages dynamic nested sampling, primarily intended for astronomical applications. Which is the field where nested sampling is the most popular. One of the first remarks in the paper is that nested sampling can be more […]

revisiting marginalisation paradoxes [Bayesian reads #1]

As a reading suggestion for my (last) OxWaSP Bayesian course at Oxford, I included the classic 1973 Marginalisation paradoxes by Phil Dawid, Mervyn Stone [whom I met when visiting UCL in 1992 since he was sharing an office with my friend Costas Goutis], and Jim Zidek. Paper that also appears in my (recent) slides as […]

the paper where you are a node

Sophie Donnet pointed out to me this arXived paper by Tianxi Li, Elizaveta Levina, and Ji Zhu, on a network resampling strategy for X validation, where I appear as a datapoint rather than as a [direct] citation! Which reminded me of the “where you are the hero” gamebooks with which my kids briefly played, before […]

Nature Outlook on AI

The 29 November 2018 issue of Nature had a series of papers on AIs (in its Outlook section). At the general public (awareness) level than in-depth machine-learning article. Including one on the forecasted consequences of ever-growing automation on jobs, quoting from a 2013 paper by Carl Frey and Michael Osborne [of probabilistic numerics fame!] that […]